The Natural Logarithm

$\ln x, x>0$. The natural logarithm. The \log of x to the base $e(e=27182818 \ldots$.
If $\ln x=y$, then $e^{y}=x$.
$\ln 1=0$ and $\ln e=1 . \ln x$ is the inverse function of e^{x} and so its graph will be the reflection in the line $y=x$ of the graph of e^{x}.
Some useful properties of the natural log, derived from general log laws:

1. $\ln (A \times B)=\ln A+\ln B$
2. $\ln \left(\frac{A}{B}\right)=\ln A-\ln B$
3. $\ln x^{r}=r \ln x$ for any real number r
4. $\log _{a} x=\frac{\ln x}{\ln a}$ for any base $a>0$ except 1
5. $\ln x=\frac{\log _{a} x}{\log _{a} e}$ any base $a>0$ except 1
$6 . \ln e^{x}=x$
$7 . e^{\ln x}=x$
Now, let's determine the derivative of $\ln x$. To do this, we will make use of two equations, these being $e^{\ln x}=x$ (1) and $\frac{d}{d x} e^{f(x)}=f^{\prime}(x) e^{f(x)}$ (2).

Now, $\frac{d}{d x} e^{\ln x}=\frac{d}{d x} x=1$

Using equation (2), we get $\frac{d}{d x} e^{\ln x}=\frac{d}{d x} \ln x \times e^{\ln x}=1$
So, $\frac{d}{d x} \ln x \times x=1$, making $\frac{d}{d x} \ln x=\frac{1}{x}$.

Here's an alternative method and it makes use of implicit differentiation.

Let $y=\ln x$, then
$e^{y}=x$ (3)
Now apply implicit differentiation to (3) and we get
$e^{y} \frac{d y}{d x}=1$
So, $\frac{d y}{d x}=\frac{1}{e^{y}}$

Since $e^{y}=x$, we get $\frac{d y}{d x}=\frac{1}{x}$

This will now also mean that $\int \frac{1}{x} d x=\ln x+C$ and $\int_{a}^{b} \frac{1}{x} d x=\ln b-\ln a=\ln \left(\frac{b}{a}\right)$
Can you identify the place in the photo below?

