The Natural Logarithm

 $\ln x$, x > 0. The natural logarithm. The log of x to the base e (e = 27182818.....)

If $\ln x = y$, then $e^y = x$.

 $\ln 1 = 0$ and $\ln e = 1$. $\ln x$ is the inverse function of e^x and so its graph will be the reflection in the line y = x of the graph of e^x .

Some useful properties of the natural log, derived from general log laws:

1.
$$\ln(A \times B) = \ln A + \ln B$$

2. $\ln\left(\frac{A}{B}\right) = \ln A - \ln B$
3. $\ln x^{r} = r \ln x$ for any real number r
4. $\log_{a} x = \frac{\ln x}{\ln a}$ for any base $a > 0$ except 1

$$5 \cdot \ln x = \frac{\log_a x}{\log_a e}$$
 any base $a > 0$ except 1

$$6 \cdot \ln e^{x} = x$$
$$7 \cdot e^{\ln x} = x$$

Now, let's determine the derivative of ln *x*. To do this, we will make use of two equations, these being $e^{\ln x} = x$ (1) and $\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$ (2).

Now,
$$\frac{d}{dx}e^{\ln x} = \frac{d}{dx}x = 1$$

Using equation (2), we get $\frac{d}{dx}e^{\ln x} = \frac{d}{dx}\ln x \times e^{\ln x} = 1$ So, $\frac{d}{dx}\ln x \times x = 1$, making $\frac{d}{dx}\ln x = \frac{1}{x}$.

Here's an alternative method and it makes use of implicit differentiation.

Let
$$y = \ln x$$
, then
 $e^y = x$ (3)

Now apply implicit differentiation to (3) and we get

$$e^{y} \frac{dy}{dx} = 1$$

So, $\frac{dy}{dx} = \frac{1}{e^{y}}$

Since $e^{y} = x$, we get $\frac{dy}{dx} = \frac{1}{x}$

This will now also mean that $\int \frac{1}{x} dx = \ln x + C$ and $\int_{a}^{b} \frac{1}{x} dx = \ln b - \ln a = \ln \left(\frac{b}{a}\right)$

Can you identify the place in the photo below?

